refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 85 results
Sort by

Filters

Technology

Platform

accession-icon GSE52358
Gene expression profiling of the tongue bud from Alk5 mutant mouse models
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

The overall goal of this project is to investigate the role of TGF-beta signaling in tissue-tissue interactions between myogenic precursors of craniofacial muscles and cranial neural crest cells (CNCCs). Here, we conducted gene expression profiling of the tongue bud from mice at embryonic day E13.5 with a CNCC-specific conditional inactivation of the TGF-beta receptor type 1 gene Alk5. These mice provide a model of microglossia as well as disrupted extraocular and masticatory muscle development, which are congenital birth defects commonly observed in several syndromic conditions.

Publication Title

ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE52357
Gene expression profiling of the mandibular arch from Alk5 mutant mouse models
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

The overall goal of this project is to investigate the role of TGF-beta signaling in tissue-tissue interactions between myogenic precursors of craniofacial muscles and cranial neural crest cells (CNCCs). Here, we conducted gene expression profiling of the mandibular arch from mice at embryonic day E11.5 with a CNCC-specific conditional inactivation of the TGF-beta receptor type 1 gene Alk5. These mice provide a model of microglossia as well as disrupted extraocular and masticatory muscle development, which are congenital birth defects commonly observed in several syndromic conditions.

Publication Title

ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE16475
Expression data from side population subfraction hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

The traditional view of hematopoiesis has been that all the cells of the peripheral blood are the progeny of a unitary homogeneous pool of hematopoietic stem cells (HSCs). Recent evidence suggests that the hematopoietic system is actually maintained by a consortium of HSC subtypes with distinct functional characteristics. We show here that myeloid-biased HSCs (My-HSCs) and lymphoid-biased (Ly-HSCs) can be purified according to their capacity for Hoechst dye efflux in combination with canonical HSC markers.

Publication Title

Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-beta1.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35357
Gene expression profiling of Myf5-Cre;Smad4flox/flox mouse models of tongue development
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

We investigated Smad4-mediated TGF-beta signaling in the development of occipital somite-derived myogenic progenitors during tongue morphogenesis by comparing the transcriptomes of tongue derived from Myf5-Cre;Smad4flox/flox mutant and Myf5-Cre;Smad4flox/+ control mice at day E13.5. Based on gene expression profiles and functional studies, we elucidated the influences Smad4 activity and TGF-beta signaling have on the gene expression profiles underlying tongue development. The data are consistent with the hypothesis that TGF-beta-Smad4-FGF6 signaling cascade plays a crucial role in myogenic cell fate determination and lineage progression during tongue myogenesis.

Publication Title

A TGFβ-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13229
Comparison of mouse NK cell subsets defined by CD27 and CD11b expression
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Previous reports have defined three subsets of mouse NK cells on the basis of the expression of CD27 and CD11b. The developmental relationship between these subsets was unclear. To address this issue, we evaluated the overall proximity between mouse NK cell subsets defined by CD27 and CD11b expression using pangenomic gene expression profiling. The results suggest that CD27+CD11b-, CD27+CD11b+ and CD27-CD11b+ correspond to three different intermediates stages of NK cell development.

Publication Title

Maturation of mouse NK cells is a 4-stage developmental program.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16675
The influence of segmental copy number variation on tissue transcriptomes through development
  • organism-icon Mus musculus
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon

Description

A preliminary understanding of the phenotypic effect of copy number variation (CNV) of DNA segments is emerging. These rearrangements were demonstrated to influence, in a somewhat dose-dependent manner, the expression of genes mapping within. They were shown to also affect the expression of genes located on their flanks, sometimes at great distance. Here, we show by monitoring these effects at multiple life stages, that these controls over expression are effective throughout mouse development. Similarly, we observe that the more specific spatial expression patterns of CNV genes are maintained throughout life. However, we find that some brain-expressed genes appear to be under compensatory loops only at specific time-points, indicating that the influence of CNVs on these genes is modulated through development. We also observe that CNV genes are significantly enriched upon transcripts that show variable time-course of expression in different strains. Thus modifying the number of copy of a gene not only potentially alters its expression level, but possibly also its time of expression.

Publication Title

Copy number variation modifies expression time courses.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE22283
expression data in lung of mice bearing inducible FGF18 transgene
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Better understanding alveolarization mechanisms could help improving prevention and treatment of diseases characterized by reduced alveolar number, especially bronchopulmonary dysplasia (BPD). Although signaling through fibroblast growth factor (FGF) receptors is essential for alveolarization, involved ligands are unidentified. FGF18 whose expression peaks during alveolar septation is likely to be involved. Herein, a mouse model of inducible, lung-targeted FGF18-transgene was used to advance the onset of FGF18 expression, and genome-wide expression changes were determined.

Publication Title

Profiling target genes of FGF18 in the postnatal mouse lung: possible relevance for alveolar development.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE10744
Copy number variation and gene expression in the mouse
  • organism-icon Mus musculus
  • sample-icon 108 Downloadable Samples
  • Technology Badge Icon

Description

Copy number variation (CNV) of DNA segments has recently been identified as a major source of genetic diversity, but a more comprehensive understanding of the extent and phenotypic effect of this type of variation is only beginning to emerge. In this study we generated genome-wide expression data from 6 mouse tissues to investigate how CNVs influence gene expression.

Publication Title

Segmental copy number variation shapes tissue transcriptomes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29848
Microarray data of differentiating embryonic stem cells overexpressing the transcription factor Msgn1
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon

Description

During mammalian gastrulation, pluripotent epiblast stem cells migrate through the primitive streak to form the multipotent progenitors of the mesoderm and endoderm germ layers. Msgn1 is a bHLH transcription factor and is a direct target gene of the Wnt/bcatenin signaling pathway. Msgn1 is expressed in the mesodermal compartment of the primitive streak and is necessary for the proper development of the mesoderm. Msgn1 mutants show defects in somitogenesis leading to a lack of trunk skeletal muscles, vertebra and ribs.

Publication Title

The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE29995
Expression data from the node and primitive streak (NPS) regions from WT and Wnt3a null embryos
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The goal of this project was to elucidate the target genes and transcriptional networks activated by Wnt3a during gastrulation, a complex morphogenetic process in which the embryonic germ layers are formed and the vertebrate body plan is established.

Publication Title

The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact