refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14 results
Sort by

Filters

Technology

Platform

accession-icon GSE20987
Gene expression data of BCR-ABL1 transformed B cell precursors from BCL6 wild-type and BCL6 knockout mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

To elucidate the mechanism of BCL6-mediated pre-B cell survival signaling, we investigated the gene expression pattern in BCR-ABL1-transformed BCL6+/+ and BCL6-/- B cell precursors. Pharmacological inhibition of BCR-ABL1 was performed with the BCR-ABL1 kinase inhibitor STI571 (Imatinib).

Publication Title

BCL6 is critical for the development of a diverse primary B cell repertoire.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE48104
DREAM silencing is part of a neuroprotective mechanism in Huntington's disease
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Deregulated intracellular Ca2+ homeostasis underlies synaptic dysfunction and is a common feature in neurodegenerative processes, including Huntington's disease (HD). DREAM/calsenilin/KChIP-3 is a multifunctional Ca2+ binding protein that controls the expression level and/or the activity of several proteins related to Ca2+ homeostasis, neuronal excitability and neuronal survival. We found that expression of endogenous DREAM (DRE antagonist modulator) is reduced in the striatum of R6 mice, in STHdh-Q111/111 knock in striatal neurons and in HD patients. DREAM down regulation in R6 striatum occurs early after birth, well before the onset of motor coordination impairment, and could be part of an endogenous mechanism of neuroprotection, since i) R6/2 mice hemizygous for the DREAM gene (R6/2xDREAM+/-) showed delayed onset of locomotor impairment and prolonged lifespan, ii) motor impairment after chronic administration of 3-NPA was reduced in DREAM knockout mice and enhanced in daDREAM transgenic mice and, iii) lentiviral-mediated DREAM expression in STHdh-Q111/111 knock in cells sensitizes them to oxidative stress. Transcriptomic analysis showed that changes in gene expression in R6/2 striatum were notably reduced in R6/2xDREAM+/- striatum. Chronic administration of repaglinide, a molecule able to bind to DREAM in vitro and to accelerate its clearance in vivo, delayed the onset of motor dysfunction, reduced striatal loss and prolonged the lifespan in R6/2 mice. Furthermore, exposure to repaglinide protected STHdh-Q111/111 knock in striatal neurons sensitized to oxidative stress by lentiviral-mediated DREAM overexpression. Thus, genetic and pharmacological evidences disclose a role for DREAM silencing in early neuroprotective mechanisms in HD.

Publication Title

Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83461
Ipsilateral and contralateral retinal ganglion cells express distinct genes during decussation at the optic chiasm
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

The retinal projection neurons, retinal ganglion cells (RGCs), can be categorized into distinct morphological and functional subtypes and by the laterality of their projections. Here, we used a new method for purifying the sparse population of ipsilaterally projecting RGCs in mouse retina from their contralaterally-projecting counterparts during embryonic development through rapid retrograde labeling followed by fluorescence-activated cell sorting (FACS). Through microarray analysis, we have uncovered the distinct molecular signatures that define and distinguish ipsilateral and contralateral RGCs during the critical period of axonal outgrowth and decussation, with over three hundred genes differentially experienced within these two cell populations. Amongst the genes upregulated in ipsilateral RGCs are many that are known to be expresed in progenitors cells and mark immaturity," including Math5 (Atoh7), Sox2, and cyclin D2. Many of these differentially regulated genes were subsequently validated via in vivo expression analysis. Thus, the molecular signatures of ipsilateral and contralateral RGCs and the mechanisms that regulate their differentiation are more diverse than previously expected.

Publication Title

Ipsilateral and Contralateral Retinal Ganglion Cells Express Distinct Genes during Decussation at the Optic Chiasm.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE41094
Transcript analyses of cisplatin and Sky1 effects in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Sky1 is a Saccharomyces cerevisiae rich serine-arginine (SR) protein-specific kinase and its enzymatic activity is essential in the cytotoxicity caused by cisplatin, although the molecular mechanisms supporting this function are not understood. We present a transcriptome analysis discriminating between RNA changes induced by cisplatin which are dependent or independent of the Sky1 function.

Publication Title

Sky1 regulates the expression of sulfur metabolism genes in response to cisplatin.

Sample Metadata Fields

Genetic information

View Samples
accession-icon GSE61555
Treatment of C3H/HeJ grafted mice with baricitinib
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reversal of Alopecia Areata Following Treatment With the JAK1/2 Inhibitor Baricitinib.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact