refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE112776
Expression data for High and Low permeable brain metastases in 231-BR mouse model
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

All highly and poorly permeable metastases from the same mouse brain were collected by laser capture microdissection. Total RNA from both metastatic lesions and immediate microenvironment was isolated from 5 mice bearing 231-BR metastases. As control 4 healthy mouse brains were included.

Publication Title

Reactive astrocytic S1P3 signaling modulates the blood-tumor barrier in brain metastases.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE25486
Nanoemulsion-Specific Gene Expression Data in Bone Marrow Derived Dendritic Cells and in Murine Nasal Epithelium
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE25485
Gene expression data in Bone Marrow Derived Dendritic Cells (BMDC) following nanoemulsion adjuvant exposure
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Antigen uptake, processing and presentation by dendritic cells are regulated by complex intra- and inter-cellular signalling events. Typical vaccine adjuvants lead to the transcription of pro-inflammatory cytokines and chemokines which relate to immune induction.

Publication Title

Nanoemulsion mucosal adjuvant uniquely activates cytokine production by nasal ciliated epithelium and induces dendritic cell trafficking.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE51073
Expression data from non-pigmented and pigmented mouse melanocytes
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Immortalized, amelanotic melanocytes isolted from skin of Balb/c express enzymatically-inactive tyrosinase due to a homozygous point mutation (TGT->TCT) in tyrosinase gene, resulting in a lack of melanin . To serve as a control cell line, pigmentation was restored in these cells by correcting the point mutation using an RNA-DNA oligonucleotide (kingly gift from Dr. Alexeev Y. Vitali).

Publication Title

Melanocyte-secreted fibromodulin promotes an angiogenic microenvironment.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13636
Analyses of cyclin D1 function using a "genetic-proteomic" approach
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

We examined the transcriptional function of cyclin D1 in mouse development using two approaches. First, we queried association of cyclin D1 with the genome of E14.5 mouse embryos using ChIP-on-chip approach. We observed binding of cyclin D1 to several promoter regions. Second, we compared gene expression profiles between wild-type and cyclin D1-null retinas. We observed several transcripts with altered levels in cyclin D1-null organs.

Publication Title

Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13635
Gene expression change in cyclin D1 -/- retinas in comparison to wildtype.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Cyclin D1 belongs to the core cell cycle machinery1, and it is frequently overexpressed in human cancers2. The full repertoire of cyclin D1 functions in normal development and in cancer cells is currently unknown. To address this question, here we introduce a novel approach that allows one to determine the set of cyclin D1-interacting proteins (D1 interactome) and cyclin D1-bound genomic fragments (D1 cistrome) in essentially any mouse organ, at any point of development or at any stage of cancer progression. Using this approach, we detected several novel tissue-specific interactors of cyclin D1. A significant number of these partners represent proteins involved in transcription. We show, using genome-wide location analysis3, that cyclin D1 occupies promoters of a very large number of genes in the developing mouse, where it binds in close proximity to transcription start sites. Bioinformatics analyses of cyclin D1-bound genomic segments in the developing embryo revealed DNA recognition sequences for several transcription factors. By querying SAGE libraries4, promoter CpG content5 and gene expression profiles of cyclin D1-null organs, we demonstrate that cyclin D1 binds promoters of highly expressed genes, and that it functions to activate or to repress gene expression in vivo. Analyses of cyclin D1 transcriptional targets reveal that cyclin D1 contributes to cell proliferation by upregulating genes required for S-phase entry and progression. Hence, cyclin D1 plays a broad transcriptional regulatory function in vivo during normal mouse development.

Publication Title

Transcriptional role of cyclin D1 in development revealed by a genetic-proteomic screen.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact