refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 50 results
Sort by

Filters

Technology

Platform

accession-icon GSE111392
Differentiation analysis of Mouse Posterior Neural tube
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Posterior embryonic axis develops from neuromesodermal progenitors which differentiate into neural tube and paraxial mesoderm

Publication Title

Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm <i>in vitro</i>.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE27811
Expression data from LSK WT, GMP WT and GMP NcstnKO
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27799
Expression data from LSK WT and LSK N1-C+
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27794
Expression data from LSK WT and LSK NcstnKO
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

Notch signaling is one of the central regulators of differentiation in a variety of organisms and tissue types. Within the hematopoietic system, Notch is essential for the emergence of definitive HSC during fetal life and controls adult HSC differentiation to the T-cell lineage. Notch activation is controlled by the gamma-secretase complex complex, composed of presenilin, nicastrin (Ncstn), anterior pharynx-1 (Aph1), and presenilin enhancer-2

Publication Title

A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE27816
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon

Description

Recurrent somatic mutations in TET2 and in other genes that regulate the epigenetic state have been identified in patients with myeloid malignancies and in other cancers. However, the in vivo effects of Tet2 loss have not been delineated. We report here that Tet2 loss leads to increased stem-cell self-renewal and to progressive stem cell expansion. Consistent with human mutational data, Tet2 loss leads to myeloproliferation in vivo, notable for splenomegaly and monocytic proliferation. In addition, haploinsufficiency for Tet2 confers increased self-renewal and myeloproliferation, suggesting that the monoallelic TET2 mutations found in most TET2-mutant leukemia patients contribute to myeloid transformation. This work demonstrates that absent or reduced Tet2 function leads to enhanced stem cell function in vivo and to myeloid transformation.

Publication Title

Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE26100
Widespread targeted chromatin remodeling during the initial phase of somatic cell reprogramming
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reprogramming factor expression initiates widespread targeted chromatin remodeling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33024
Sequentially acting Sox transcription factors in neural lineage development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Sequentially acting Sox transcription factors in neural lineage development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33061
Sequentially acting Sox transcription factors in neural lineage development [microarray]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

We report sequential binding but unique functions of different Sox transcription factors during distinct stages of neural differentiation

Publication Title

Sequentially acting Sox transcription factors in neural lineage development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12466
Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptional signatures of Itk-deficient CD3+, CD4+ and CD8+ T-cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17985
Gene expression profile of Dicer-deficient oocytes
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Small RNAs, such as miRNAs and siRNAs, are involved in gene regulation in a variety of systems, including mouse oocytes. Dicer is a ribonuclease III enzyme essential for miRNA and siRNA biosynthesis. In an effort to uncover the function of small RNAs during oocyte growth, we specifically deleted Dicer in growing oocytes and analyzed the global pattern of gene expression in these Dicer-deficient oocytes.

Publication Title

MicroRNA activity is suppressed in mouse oocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact