refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 9 of 9 results
Sort by

Filters

Technology

Platform

accession-icon GSE56275
Gene expression differences between prion-resistant and prion-susceptible cells
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon

Description

Prions consist of aggregates of abnormal conformers of cellular prion protein (PrPC). They propagate by recruiting host-encoded PrPC although the critical interacting proteins and the reasons for the differences in susceptibility of distinct cell lines and populations are unknown. We derived a lineage of cell lines with markedly differing susceptibilities, unexplained by PrPC expression differences, to identify such factors. We examined the transcriptomes of prion-resistant revertants, isolated from highly susceptible cells, and identified a gene expression signature associated with susceptibility. Several of these genes encode proteins with a role in extracellular matrix (ECM) remodelling, a compartment in which disease-related PrP deposits. Loss-of-function of nine of these genes significantly increased susceptibility. Remarkably, inhibition of fibronectin 1 binding to integrin 8 by RGD peptide inhibited metalloproteinases (MMP)-2/9 whilst increasing prion propagation rates. This indicates that prion replication may be controlled by MMPs at the ECM in an integrin-dependent manner.

Publication Title

Identification of a gene regulatory network associated with prion replication.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE106581
Cancer-associated rs6983267 SNP and its accompanying long non-coding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

The cancer-risk associated rs6983267 single nucleotide polymorphism (SNP) and the accompanying long non-coding RNA CCAT2 in the highly amplified 8q24.21 region has been implicated in cancer predisposition, though causality has not been established. Here, using allele-specific CCAT2 transgenic mice, we demonstrate that CCAT2 overexpression leads to spontaneous myeloid malignancies. CCAT2 is overexpressed in bone marrow and peripheral blood of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) patients. CCAT2 induces global deregulation of gene expression by downregulating EZH2 in vitro and in vivo in an allele-specific manner. We also identified a novel disease-specific RNA mutation (named DNA-to-RNA allelic imbalance, DRAI) at the SNP locus in MDS/MPN patients and CCAT2-transgenic mice. The RNA transcribed from the SNP locus in malignant hematopoietic cells have different allelic composition from the corresponding genomic DNA, a phenomenon rarely observed in normal cells. Our findings provide fundamental insights into the functional role of rs6983267 SNP and CCAT2 in myeloid malignancies.

Publication Title

Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA <i>CCAT2</i> induce myeloid malignancies via unique SNP-specific RNA mutations.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44563
Expression data from C2C12 myotubes infected with RML prions
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Prion infection in animals results in neurodegeneration and eventually death. To examine the cellular impact of Prion disease, we profiled non-proliferative fully differentiated C2C12 cells, which can replicate prions to high levels. Results suggest that accumulation of high levels of PrPSc in C2C12 myotubes does not cause any overt cellular dysfunction or molecular pathology.

Publication Title

Infectious prions accumulate to high levels in non proliferative C2C12 myotubes.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE35332
Stem cell factor programs the mast cell activation phenotype
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Mast cells, activated by antigen via the high affinity receptor for IgE (FcRI), release an array of pro-inflammatory mediators that contribute to allergic disorders such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation and survival, and, under acute conditions, enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal antigen-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcRI-mediated degranulation and cytokine production. The hypo-responsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization, with evidence implicating a down-regulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.

Publication Title

Stem cell factor programs the mast cell activation phenotype.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE16486
Gene expression data from gastrocnemius muscle (m.Gas) in young adult mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

This study examined the effects of castration and testosterone replacement on global differential gene transcription in the gastrocnemius muscle (m.Gas) in young adult mice over 14-days.

Publication Title

Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE39382
IL-33 induces a hypo-responsive human mast cell phenotype
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Interleukin-33 (IL-33) is elevated in afflicted tissues of patients with mast cell-dependent chronic allergic diseases. Based on its acute effects on mouse mast cells (MCs), IL-33 is thought to play a role in the pathogenesis of allergic disease through MC activation. However, the manifestations of chronic IL-33 exposure on human MC function, which best reflect the conditions associated with chronic allergic disease, are unknown. We now find that long-term exposure of human and mouse MCs to IL-33 results in a substantial reduction of MC activation in response to antigen. This reduction required >72 h exposure to IL-33 for onset and 1-2 wk for reversion following IL-33 removal. This hypo-responsive phenotype was determined to be a consequence of MyD88-dependent attenuation of signaling processes necessary for MC activation including antigen-mediated calcium mobilization and cytoskeletal reorganization; potentially as a consequence of down-regulation of the expression of PLCg1 and Hck. These findings suggest that IL-33 may play a protective, rather than a causative role in MC activation under chronic conditions and, furthermore, reveal regulated plasticity in the MC activation phenotype. The ability to down-regulate MC activation in this manner may provide alternative approaches for treatment of MC-driven disease.

Publication Title

IL-33 induces a hyporesponsive phenotype in human and mouse mast cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE19836
A mouse Embryonic Stem Cell Bank for inducible overexpression of human chromosome 21 genes
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon

Description

The HSA21-mES Cell Bank includes, in triplicate clones, thirty-two murine orthologs of HSA21 genes, which can be overexpressed in an inducible manner using the Tet-off system integrated in the Rosa26 locus.

Publication Title

A mouse embryonic stem cell bank for inducible overexpression of human chromosome 21 genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74677
Examination of loss of Selenophosphate Synthetase 1 (SPS1) in mouse tissues and cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

To examine the role of SPS1 in mammals, we generated a Sps1 knockout mouse and found that systemic SPS1 deficiency was embryonic lethal. Embryos were clearly underdeveloped by E8.5 and virtually reabsorbed by E14.5. Removal of Sps1 specifically in hepatocytes using Albumin-cre preserved viability, but significantly affected expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione-S-transferase omega 1. To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma cell line, which recapitulated changes in the glutathione system proteins. We further found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 has a role in supporting and/or sustaining cancer. In addition, the increased ROS levels observed in F9 SPS1/GLRX1 deficient cells were reversed and became more like those in F9 SPS1 sufficient cells by overexpressing mouse or human GLRX1. The results suggest that SPS1 is an essential mammalian enzyme with roles in regulating redox homeostasis and controlling cell growth.

Publication Title

Selenophosphate synthetase 1 is an essential protein with roles in regulation of redox homoeostasis in mammals.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51250
Combined targeting of JAK2 and Bcl-xL/Bcl-2 as a novel curative treatment for malignancies expressing mutant JAK2 and overcoming acquired resistance to single agent JAK2 inhibitors
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact