refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 24 results
Sort by

Filters

Technology

Platform

accession-icon GSE16387
Licensing of PPARg-regulated gene expression by IL-4-induced alternative macrophage activation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Sample Metadata Fields

Specimen part, Treatment, Subject, Time

View Samples
accession-icon GSE25088
PPARg and IL-4-induced gene expression data from wild-type and STAT6 knockout mouse bone marrow-derived macrophages
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

C57Bl/6 wild-type and STAT6 KO mice were used to study PPARg and IL-4 signaling. Bone marrow of 3 mice per group was isolated and differentiated to macrophages with M-CSF (20 ng/ml). 20 ng/ml IL-4 was used to induce alternative macrophage activation and 1 uM Rosiglitazone (RSG) was used to activate PPARg. From each mouse 4 samples were generated: 1. M-CSF, 2. M-CSF+RSG, 3. IL-4 and 4. IL-4+RSG. All compounds were added throughout the whole differentiation process, and frech media was added every other day. Control cells were treated with vehicle (DMSO:ethanol). After 10 days, RNA was isolated and gene expression profiles were analyzed using Mouse Genome 430 2.0 microarrays from Affymetrix.

Publication Title

STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE33064
Expression data from a Tbx1 gene allelic series
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

This study was aimed at identifying Tbx1 dosage-dependent genes in vivo, so we performed a transcriptome analysis of Tbx1 mutants with nine different genotypes corresponding to different Tbx1 mRNA dosages.

Publication Title

In vivo response to high-resolution variation of Tbx1 mRNA dosage.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE102587
IKK is essential for the development and maintenance of Marginal zone and Follicular B cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

IKK kinase is essential for the B cell maturation and secondary lymphoid organ development. In the current study, we evaluated the role of IKK in the marginal zone and follicular B lymphocyte development by genetically deleting IKK from the B cell lineage using CD19-Cre mice. The loss of IKK did not affect the normal development of early B cell progenitors. However, a significant decline was observed in the percentage of immature B lymphocytes, mature marginal zone and follicular B cells along with a severe disruption of splenic marginal and follicular B cell zones. A gene expression analysis performed on the RNA extracted from the newly formed B cells (B220+IgMhi) revealed that IKK deficiency produces significant changes in the expression of genes involved in MZ and FO B lymphocyte survival, homing and migration. And several among those genes identified belong to G protein family. Specifically, we validated the upregulated expression of regulator of G protein signaling 13 (RGS13), which is a GTPase activating protein (GAP) that negatively regulates G protein signaling and impede B cell migration. Likewise, promigratory B lymphocyte receptor, the sphingosine-1-phosphate receptor 3 (SIPR3) that couple to Gi showed significantly reduced expression. In addition, an in silico analysis of gene product interactions revealed NF-B signaling pathways to be a major gene regulating networks perturbed with IKK deletion. Taken together, this study reveals IKKNF-B and G protein signaling axis to be central for the MZ and FO B cells survival, maintenance, homing and migration.

Publication Title

IKKα deficiency disrupts the development of marginal zone and follicular B cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38538
Expression data from E12.5 NSP cells, CTL v REST shRNA
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

REST is a master regulator of genes that are involved in the acqusition of neuronal fate. The role of REST is not well understood so we attempted to investigate the role of REST in the development of neural cells by analysing the genes that are upregulated when REST is knocked down via shRNA

Publication Title

REST regulates the pool size of the different neural lineages by restricting the generation of neurons and oligodendrocytes from neural stem/progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38729
Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio)
  • organism-icon Danio rerio
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon

Description

Domesticated animal populations often show profound reductions in predator avoidance and fear-related behavior compared to wild populations. These reductions are remarkably consistent and have been observed in a diverse array of taxa including fish, birds, and mammals. Experiments conducted in common environments indicate that these behavioral differences have a genetic basis. In this study, we quantified differences in fear-related behavior between wild and domesticated zebrafish strains and used microarray analysis to identify genes that may be associated with this variation.

Publication Title

Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio).

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21264
Inflammation and tumor susceptibility in skin cancer
  • organism-icon Mus spretus, Mus musculus, Mus musculus x mus spretus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE12248
Genetic architecture of murine skin inflammation and tumor susceptibility
  • organism-icon Mus spretus, Mus musculus, Mus musculus x mus spretus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Gene expression in self-renewing epithelial tissues is controlled by cis- and trans-activating regulatory factors that mediate responses to exogenous agents capable of causing tissue damage, infection, inflammation, or tumorigenesis. We used network construction methods to analyze the genetic architecture of gene expression in normal mouse skin in a cross between tumor-susceptible Mus musculus and tumor-resistant Mus spretus. We demonstrate that gene expression motifs representing different constituent cell types within the skin such as hair follicle cells, haematopoietic cells, and melanocytes are under separate genetic control. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in mice susceptible or resistant to tumor development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of hair follicle gene expression, and the Vitamin D receptor (Vdr) links epidermal barrier function, inflammation, and tumor susceptibility.

Publication Title

Genetic architecture of mouse skin inflammation and tumour susceptibility.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42742
Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes
  • organism-icon Mus musculus
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon

Description

We developed a mouse model that captures radiation effects on host biology by transplanting unirradiated Trp53 null mammary tissue to sham or irradiated hosts. Gene expression profiles of tumors that arose in irradiated mice are distinct from those that arose in nave hosts.

Publication Title

Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10467
Investigating genes regulated by mir-155 in a mouse macrophage cell line
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Mammalian microRNAs (miRNAs) are emerging as key regulators of the development and function of the immune system. Here, we report a strong but transient induction of miR-155 in mouse bone marrow after injection of bacterial lipopolysaccharide (LPS) correlated with granulocyte/monocyte (GM) expansion. Demonstrating the sufficiency of miR-155 to drive GM expansion, enforced expression in mouse bone marrow cells caused GM proliferation in a manner reminiscent of LPS treatment. However, the mir-155-induced GM populations displayed pathological features characteristic of myeloid neoplasia. Extending possible relevance to human disease, miR-155 was overexpressed in the bone marrow of patients with acute myeloid leukemia (AML). Furthermore, miR-155 repressed a subset of genes implicated in hematopoietic development and disease. These data implicate miR-155 as a contributor to physiological GM expansion during inflammation and to certain pathological features associated with AML, emphasizing the importance of proper miR-155 regulation in developing myeloid cells during times of inflammatory stress.

Publication Title

Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact