refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE68756
Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68613
Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Sox9 is a transcription factor expressed in most solid tumors. However, the molecular mechanisms underlying Sox9 function during tumorigenesis remain unclear. Here, using a genetic mouse model of basal cell carcinoma (BCC), the most frequent cancer in human, we show that Sox9 is expressed from the earliest step of tumor formation in a Wnt/-catenin dependent manner. Deletion of Sox9 together with the constitutive activation of Hedgehog (HH) signaling completely prevents BCC formation and leads to a progressive loss of oncogene expressing cells. Transcriptional profiling of oncogene expressing cells with Sox9 deletion, combined with in vivo ChIP-sequencing uncovers a cancer-specific gene network regulated by Sox9 that promotes stemness, extracellular matrix (ECM) deposition and cytoskeleton remodeling while repressing epidermal differentiation. Our study identifies the molecular mechanisms regulated by Sox9 that links tumor initiation and invasion.

Publication Title

Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18587
Specific modulation of mucosal immune response, tolerance and proliferation in mice colonized with A. muciniphila
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Epithelial cells of the mammalian intestine are covered with a mucus layer that prevents direct contact with intestinal microbes but also constitutes a substrate for mucus-degrading bacteria. To study the effect of mucus degradation on the host response, germ-free mice were colonized with Akkermansia muciniphila. This anaerobic bacterium belonging to the Verrucomicrobia is specialized in the degradation of mucin, the glycoprotein present in mucus, and found in high numbers in the intestinal tract of human and other mammalian species. Efficient colonization of A. muciniphila was observed with highest numbers in the cecum, where most mucin is produced. In contrast, following colonization by Lactobacillus plantarum, a facultative anaerobe belonging to the Firmicutes that ferments carbohydrates, similar cell-numbers were found at all intestinal sites. Whereas A. muciniphila was located closely associated with the intestinal cells, L. plantarum was exclusively found in the lumen. The global transcriptional host response was determined in intestinal biopsies and revealed a consistent, site-specific, and unique modulation of about 750 genes in mice colonized by A. muciniphila and over 1500 genes after colonization by L. plantarum. Pathway reconstructions showed that colonization by A. muciniphila altered mucosal gene expression profiles toward increased expression of genes involved in immune responses and cell fate determination, while colonization by L. plantarum led to up-regulation of lipid metabolism. These indicate that the colonizers induce host responses that are specific per intestinal location. In conclusion, we propose that A. muciniphila modulates pathways involved in establishing homeostasis for basal metabolism and immune tolerance toward commensal microbiota.

Publication Title

Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila.

Sample Metadata Fields

Sex, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact