refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE9857
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9803
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice (set 1)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9804
Striatal gene expression data from 12 weeks-old R6/2 mice and control mice (set 2)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon

Description

To test the hypotheses that mutant huntingtin protein length and wild-type huntingtin dosage have important effects on disease-related transcriptional dysfunction, we compared the changes in mRNA in seven genetic mouse models of Huntington's disease (HD) and postmortem human HD caudate. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in and full-length transgenic models of HD took longer to appear, 15- and 22-month CHL2(Q150/Q150), 18-month Hdh(Q92/Q92) and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. Whereas it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared with those caused by the expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. In addition, very high correlations between the signatures of mice expressing normal levels of wild-type huntingtin and mice in which the wild-type protein is absent suggest a limited effect of the wild-type protein to change basal gene expression or to influence the qualitative disease-related effect of mutant huntingtin. The combined analysis of mouse and human HD transcriptomes provides important temporal and mechanistic insights into the process by which mutant huntingtin kills striatal neurons. In addition, the discovery that several available lines of HD mice faithfully recapitulate the gene expression signature of the human disorder provides a novel aspect of validation with respect to their use in preclinical therapeutic trials.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10202
Striatal gene expression data from 22-month-old CHL2 mice and control mice.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Achieving a mechanistic understanding of disease and initiating preclinical therapeutic trials necessitate the study of huntingtin toxicity and its remedy in model systems. To allow the engagement of appropriate experimental paradigms, Huntingtons disease (HD) models need to be validated in terms of how they recapitulate a particular aspect of human disease. In order to examine transcriptome-related effects of mutant huntingtin, we compared striatal mRNA profiles from seven genetic mouse models of disease to that of postmortem human HD caudate using microarray analysis. Transgenic models expressing short N-terminal fragments of mutant huntingtin (R6/1 and R6/2 mice) exhibited the most rapid effects on gene expression, consistent with previous studies. Although changes in the brains of knock-in models of HD took longer to appear, 15-month and 22-month CHL2Q150/Q150, 18-month HdhQ92/Q92 and 2-year-old YAC128 animals also exhibited significant HD-like mRNA signatures. When the affected genes were compared across models, a robust concordance was observed. Importantly, changes concordant across multiple lines mice were also in excellent agreement with the mRNA changes seen in human HD caudate. Although it was expected that the expression of full-length huntingtin transprotein might result in unique gene expression changes compared to those caused by expression of an N-terminal huntingtin fragment, no discernable differences between full-length and fragment models were detected. There was, however, an overall concordance between transcriptomic signature and disease stage. We thus conclude that the transcriptional changes of HD can be modelled in several available lines of transgenic mice, comprising lines expressing both N-terminal and full-length mutant huntingtin proteins. The combined analysis of mouse and human HD transcriptomes provides an important chronology of mutant huntingtin's gene expression effects.

Publication Title

Mutant huntingtin's effects on striatal gene expression in mice recapitulate changes observed in human Huntington's disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE29538
Expression data of small intestine crypts and villi from mice with nutritional and genetic risk factors for intestinal tumors
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon

Description

Nutritional and genetic risk factors for intestinal tumors are additive on mouse tumor phenotypes, demonstrating that diet and genetic factors impact risk by distinct combinatorial mechanisms. We analyzed expression profiles of small intestine crypts and villi from mice with nutritional and genetic risk factors. The results advanced our understanding of the mechanistic roles played by major risk factors in the pathogenesis of intestinal tumors.

Publication Title

Paneth cell marker expression in intestinal villi and colon crypts characterizes dietary induced risk for mouse sporadic intestinal cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE10849
Caveolin-1 Knockout Hearts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

Hearts Lacking Caveolin-1 Develop Hypertrophy with Normal Cardiac Substrate Metabolism

Publication Title

Hearts lacking caveolin-1 develop hypertrophy with normal cardiac substrate metabolism.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE92357
GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

GATA4-dependent organ-specific endothelial differentiation controls liver development and embryonic hematopoiesis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP068242
Differential gene expression m39 vs. siblings
  • organism-icon Danio rerio
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

RNAseq analysis of cloche m39 mutant zebrafish embryos and wild type siblings at 90% epiboly - tailbud stage Overall design: In order to isolate the cloche gene, RNAseq was performed on a deletion allele of the zebrafish cloche mutant. RNA was extracted from individual embryos at a stage the cloche gene was predicted to be expressed based on previous literature. RNA from the respective genoptypes was then pooled and subjected to RNAseq analysis.

Publication Title

Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact