refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE24454
Reverse myocardial remodeling by aortic bending debanding in mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon

Description

The objective of this study was to identify alterations in gene expression during reverse myocardial remodeling in a mouse model of reversible pressure overload.

Publication Title

Collagen isoform shift during the early phase of reverse left ventricular remodelling after relief of pressure overload.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18737
Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18669
Analysis of murine hematopoieitic stem cells, multipotent progenitors, PreMegE progenitors and mature CD4+ T cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon

Description

An investigation of the global gene expression signatures of murine hematopoietic stem cell differentiation during steady state hematopoiesis.

Publication Title

Epigenetic chromatin states uniquely define the developmental plasticity of murine hematopoietic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8407
Elucidation of the phenotypic, functional and molecular topography of a myeloerythroid progenitor cell hierarchy
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon

Description

The major myeloid blood cell lineages, including erythrocytes, platelets, granulocytes and macrophages, are generated from hematopoietic stem cells (HSC) by differentiation through a series of increasingly more committed progenitor cells. Precise phenotypic identification and functional characterization of such intermediate progenitors has important consequences for understanding fundamental differentiation processes and is clinically relevant since such events become dysregulated in various disease settings, including leukemia. While previous studies have suggested a hierarchy for myeloid differentiation involving a common progenitor through which all myeloid lineages are derived, several recent studies have suggested that such a developmental intermediate might not be an absolute requirement. Here, we evaluated the functional in vitro and in vivo potentials of a range of prospectively isolated myeloid precursors with differential expression of CD150, Endoglin and CD41. Our studies reveal a complex hierarchy of myeloerythroid progenitors with distinct and developmentally restricted lineage potentials. Global gene expression signatures of these cellular subsets revealed expression patterns consistent with their functional capacities, while hierarchical clustering analysis provides details on their lineage relationships. These data challenge existing models of hematopoietic differentiation, by suggesting that progenitors of the innate and adaptive immune system in the adult separate late, and to a large extent, following the divergence of megakaryocytic/erythroid potential.

Publication Title

Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27901
Transactivation-deficient p53 Mutants in Ras-induced Cellular Senescence
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon

Description

As a critical cellular stress sensor, p53 mediates a variety of defensive processes including cell-cycle arrest, apoptosis, and senescence to prevent propagation of hyperproliferative cells or cells with a damaged genome, hence the formation of neoplasia. Transactivation of downstream genes plays an important while sometimes controversial role in regulating these cellular processes. To evaluate the dependence on transcriptional activation in p53s activities, we generated genetically-modified mouse lines carrying mutations in the transactivation domains (TADs) of p53. These transactivatio-deficient mutants serve as unique reagents to probe the dependence on robust transactivation in p53-mediated cellular functions, as well as the underneath mechanisms. To identify genes differentially regulated by these p53 mutants, we performed gene expression profiling analysis on mouse embryonic fibroblast cells (MEFs) from these mice in the context of oncogenic Ras-induced premature cellular senescence.

Publication Title

Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact