refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE48112
BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

BET bromodomains mediate transcriptional pause release in heart failure.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE18600
Importance of histone demethylation in adipogenic differentiation and function
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18598
Differentiating 3T3-L1 adipocytes, introduced with siRNA against aof2 and rfk genes, or treated with tranylcypromine
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Adipogenic differentiation and metabolic adaptation are initiated through transcriptional and epigenetic reprogramming. In particular, dynamic changes in histone modifications may play central roles in the rearrangement of gene expression patterns. LSD1 (KDM1) protein, encoded by aof2 gene, is a histone demethylase, which is involved in transcriptional regulation. Since the enzymatic activity of LSD1 is FAD (flavin adenine dinucleotide)-dependent, its effects on gene expression may be influenced by FAD availability.

Publication Title

FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18599
Differentiating 3T3-L1 adipocytes, introduced with siRNA against phf21a gene
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon

Description

Adipogenic differentiation and metabolic adaptation are initiated through transcriptional and epigenetic reprogramming. In particular, dynamic changes in histone modifications may play central roles in the rearrangement of gene expression patterns. BHC80 protein, encoded by phf21a gene, is a part of LSD1 histone demethylase complex and is essential for the demethylation activity.

Publication Title

FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32265
Gene-expression changes resulting from loss of the mTORC1 component Raptor in murine hematopoietic stem and progenitor cell-enriched populations (HSPC)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

We investigated the role of mTORC1 in murine hematopoiesis by conditionally deleting the Raptor gene in murine hematopoietic stem cells. We observed mutliple alterations evoked by Raptor loss in hematopoiesis and profiled gene-expression alterations induced by raptor loss in Flt3-Lin-Sca1+cKit+ hematopoietic stem and progenitor enriched cell populations, 5 weeks post Raptor deletion.

Publication Title

mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE109839
Effect of LSD1 knockdown on differentiating C2C12 myoblasts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Analysis of differentiating LSD1-KD C2C12 myoblasts. We found LSD1 is an important regulator of oxidative phenotypes in skeletal muscle cells.

Publication Title

LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE20844
Differential Expression of Ove26(Diabetic) vs FVB(Nondiabetic) mice
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon

Description

Objective Previous studies showed that genetic deletion or pharmacological blockade of the Receptor for Advanced Glycation Endproducts (RAGE) prevents the early structural changes in the glomerulus associated with diabetic nephropathy (DN). To overcome limitations of mouse models that lack the progressive glomerulosclerosis observed in humans, we studied the contribution of RAGE to DN in the OVE26 type 1 mouse, a model of progressive glomerulosclerosis and decline of renal function.

Publication Title

Deletion of the receptor for advanced glycation end products reduces glomerulosclerosis and preserves renal function in the diabetic OVE26 mouse.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE18125
Epigenetic regulation of Bmp2 and Smad6 in Ras-induced senescence
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon

Description

Epigenetically silenced Ink4a-Arf locus is activated by loss of H3K27me3 in cellular senescence, where secreted factor expression is also involved. Here we analyzed epigenome and transcriptome alteration during Ras-induced senescence using mouse embryonic fibroblast (MEF). Seventeen genes with H3K27me3 loss and H3K4me3 gain showed marked upregulation, including p16Ink4a and Bmp2, a secreted factor for BMP/SMAD signal. Smad6, specific BMP/SMAD pathway inhibitor, was identified as the only one gene showing de novo H3K27 trimethylation with H3K4me3, resulting in strong repression. Ras-activated cells senesced with SMAD1/5/8 phosphorylation, and they escaped from senescence with decreased SMAD1/5/8 phosphorylation when introducing Smad6 or knocking-down Bmp2.

Publication Title

Activation of Bmp2-Smad1 signal and its regulation by coordinated alteration of H3K27 trimethylation in Ras-induced senescence.

Sample Metadata Fields

Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact