refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE28736
BATF knockout B cells
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

compare wild type and Batf-/- B cells activated for 0 1 or 2 days in vitro.

Publication Title

The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9460
Mouse model of Osteosarcoma
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon

Description

expression analysis from a genetically engineered mouse model of osteosarcoma

Publication Title

Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13121
SIRT1 redistribution on chromatin promotes genome stability but alters gene expression during aging
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE57810
Expression profiling of tumor cells from MYCN-driven neuroblastoma upon BRD4 or AURKA inhibition
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon

Description

Amplification of MYCN is the most prominent genetic marker of high-stage neuroblastoma, a childhood tumor originating from the neural crest. We generated a cell line (mNB-A1) from tumors developed in transgenic mouse and treated these cells with DMSO (n=6), the BRD4-inhibitor JQ1 (n=3) or the AURKA-inhibitor MLN8237 (n=3) for 24 h.

Publication Title

A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE13120
Age-related gene expression changes in mouse neocortex
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon

Description

Aging is associated with major nuclear changes affecting genomic integrity and gene expression. Here we compare the gene expression profiles in the neocortex of young (5 months old) and old (30 months old) B6xC3 F1 mice.

Publication Title

SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon SRP008976
Personal Omics Profiling Reveals Dynamic Molecular Phenotypes and Actionable Medical Risks
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Illumina Genome Analyzer IIx

Description

We have determined the whole genome sequence of an individual at high accuracy and performed an integrated analysis of omics profiles over a 1.5 year period that included healthy and two virally infected states. Omics profiling of transcriptomes, proteomes, cytokines, metabolomes and autoantibodyomes from blood components have revealed extensive, dynamic and broad changes in diverse molecular components and biological pathways that occurred during healthy and disease states. Many changes were associated with allele- and edit-specific expression at the RNA and protein levels, which may contribute to personalized responses. Importantly, genomic information was also used to predict medical risks, including Type II Diabetes (T2D), whose onset was observed during the course of our study using standard clinical tests and molecular profiles, and whose disease progression was monitored and subsequently partially managed. Our study demonstrates that longitudinal personal omics profiling can relate genomic information to global functional omics activity for physiological and medical interpretation of healthy and disease states. Overall design: Examination of blood component in 20 different time points over 1.5 years which includes 2 disease state and 18 healty state Related exome studies at: SRX083314 SRX083313 SRX083312 SRX083311

Publication Title

Personal omics profiling reveals dynamic molecular and medical phenotypes.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact